ON EXTENSION PROPERTY OF CANTOR-TYPE SETS

A.GONCHAROV
Department of Mathematics
Bilkent University
06533 Ankara, Turkey
E-mail: goncha@fen.bilkent.edu.tr

Abstract

We suggest a new approach to prove the dominating norm property for spaces $\mathcal{E}(K)$ of Whitney functions, based on the estimation of least deviation of polynomials on Cantor-type sets. In this way we prove that the generalized Cantor sets of finite type and logarithmic dimension 1 have the extension property, since by Tidten-Vogt characterization a compact set K has the extension property iff the space $\mathcal{E}(K)$ has the property $D N$.

1. Introduction

Let K be a compact set without isolated points in \mathbb{R}. Then $\mathcal{E}(K)$ is the space of Whitney functions with the topology defined by the norms

$$
\|f\|_{q}=|f|_{q}+\sup \left\{\frac{\left|\left(R_{y}^{q} f\right)^{(k)}(x)\right|}{|x-y|^{q-k}}: x, y \in K, x \neq y, k=0,1, \ldots q\right\}
$$

$q=0,1, \ldots$, where $|f|_{q}=\sup \left\{\left|f^{(k)}(x)\right|: x \in K, k \leq q\right\}$ and $R_{y}^{q} f(x)=$ $f(x)-T_{y}^{q} f(x)$ is the Taylor remainder. We say that K has the extension property if there exists a linear continuous extension operator $L: \mathcal{E}(K) \rightarrow$ $C^{\infty}(\mathbb{R})$. The problem of geometric characterization of extension property goes back to Mityagin [4]. In [1] it was proved that the generalized Cantor sets of finite type with logarithmic dimension >1 (see [1] for definitions and details; see [3] for the bibliography) have the extension property, whereas for the case with logarithmic dimension <1 this is no longer true. Here we consider model Cantor-type sets of logarithmic dimension 1 and show that they have the extension property. The proof is based on the estimation of least deviation for polynomials on Cantor-type sets.

2. Dominating Norm Property.

We shall use the property $D N$ (see [7]) of Fréchet spaces, which can be given as follows (see e.g. [3],[1]):

[^0]\[

$$
\begin{equation*}
\exists p, \exists R>0: \forall q \exists r, C:\|\cdot\|_{q} \leq t^{R}\|\cdot\|_{p}+\frac{C}{t}\|\cdot\|_{r}, t>0 . \tag{1}
\end{equation*}
$$

\]

Here and in the sequel we suppose that the system of seminorms of Fréchet space is increasing; $p, q, r \in \mathbb{N}_{0}:=\{0,1, \ldots\}$.

Due to Tidten ([5], Folg.2.4) we have the following characterization: a compact set K has the extension property iff the space $\mathcal{E}(K)$ has the property $D N$. Due to Tidten and Frerick (see e.g Lemma 1 in [6]) in the case of spaces of Whitney functions one can replace the norm $\|\cdot\|_{q}$ in (1) by simple sup-norm $|\cdot|_{q}$. Obviously, it suffices to consider only elements of increasing sequence $\left(q_{v}\right)$. Thus, in order to show the extension property of a compact set K it is enough to prove that

$$
\begin{gather*}
\exists R>0: \forall q=2^{v} \exists r, C, t_{0}: \forall t>t_{0}, \forall f \in \mathcal{E}(K) \\
|f|_{0} \leq t^{-R}, \quad\|f\|_{r} \leq t \Longrightarrow|f|_{q} \leq C . \tag{2}
\end{gather*}
$$

3. Estimation of least deviation for polynomials on Cantor-type sets.

Let $N \geq 2$ be integer and $\left(l_{n}\right)_{n=0}^{\infty}$ be a sequence such that $l_{0}=1$, $0<N \cdot l_{n}<l_{n-1}, n \in \mathbb{N}$. Let K_{N} be the Cantor set associated with the sequence $\left(l_{n}\right)$ that is $K=\bigcap_{n=0}^{\infty} E_{n}$, where $E_{0}=I_{0,1}=[0,1], E_{n}$ is a union of N^{n} closed basic intervals $I_{n, k}$ of length l_{n} and E_{n+1} is obtained by deleting of $N-1$ open equidistant subinterval of length $h_{n+1}, h_{n+1}=\frac{l_{n}-N l_{n+1}}{N-1}$, from each $I_{n, k}, k=1,2, \ldots N^{n}$.

Given sequence $\left(\alpha_{n}\right)_{n=2}^{\infty}$ let us denote by $K_{N}^{\left(\alpha_{n}\right)}$ the Cantor set associated with the sequence $\left(l_{n}\right)$, where $l_{0}=1, l_{1}<1 / N$ and $l_{n}=l_{n-1}^{\alpha_{n}}=\ldots=$ $l_{1}^{\alpha_{2} \cdots \alpha_{n}}, n \geq 2$. Here we consider only the case $\alpha_{n} \rightarrow N$, which gives the compact sets with logarithmic dimension 1 , so we can suppose that the first elements of the sequence $\left(\alpha_{n}\right)$ are chosen in such a way that the compact set $K_{N}^{\left(\alpha_{n}\right)}$ is well-defined. Also without loss of generality we can restrict ourselves by condition

$$
\begin{equation*}
l_{n} \leq h_{n}, \forall n \tag{3}
\end{equation*}
$$

Given $m \in \mathbb{N}$ and a compact set K we will consider the value of least deviation $\Delta_{m}(K)=\inf _{P \in \Pi_{m}^{\prime}} \sup _{z \in K}|P(z)|$, where Π_{m}^{\prime} stands for the set of all polynomials of degree less than or equal to m with the leading coefficient equal to 1 .

Lemma 1. Given integer $N \geq 2$ let $K_{N}=\cup_{1}^{N} I_{k}$ be a union of equidistant intervals I_{k} of length l with $l \leq h$, where h is the distance between neighboring intervals. Then $\Delta_{N}\left(K_{N}\right) \geq l / 2 \cdot h^{N-1}$.

This follows by de la Valée Poussin's Theorem (see e.g. [2], T.5.2). We see that some zeros of the polynomial of least deviation on K_{N} do not belong to the compact set already for $N \geq 4$ provided that the length l is sufficiently small.

Lemma 2. Let K_{N} be a Cantor-type compact set associated with the sequence $\left(l_{n}\right)$. Given $v, n \in \mathbb{N}$ and m with $N^{v-1}<m \leq N^{v}$ let us take any basic interval $I_{n, k}, k=1, \ldots, N^{n}$, of the compact set K_{N}. Then

$$
\Delta_{m}\left(K_{N} \cap I_{n, k}\right) \geq(4 N)^{-N^{v}} l_{n+v} l_{n+v-1}^{N-1} l_{n+v-2}^{(N-1) N} \cdots l_{n}^{(N-1) N^{v-1}}
$$

Proof: Set $K=K_{N} \cap I_{n, k}$. Since the values $\Delta_{m}(K)$ do not increase, it is enough to show the inequality only for $m=N^{v}$. We proceed by induction on v. The case $v=1$ is given by Lemma 1 . Suppose that the desired inequality holds for the value $v-1$. The interval $I_{n, k}$ covers N intervals $I_{n+1, j}, j=1,2, \ldots, N$. Consider the circles $B_{j}=\left\{z \in \mathbb{C}:\left|z-c_{j}\right|<\right.$ $\left.\frac{1}{2}\left(l_{n+1}+h_{n+1}\right)\right\}, j=1,2, \ldots, N$, where c_{j} is the midpoint of $I_{n+1, j}$. Let $Q_{m}, Q_{m}(x)=\prod_{i=1}^{m}\left(x-\zeta_{i}\right)$, be the polynomial of least deviation on K. Let k_{j} be the number of zeros of Q_{m} in the circle $B_{j}, j=1,2, \ldots, N$. Clearly, there exists a number j_{0} such that $k_{j_{0}} \leq N^{v-1}$.

Suppose at first that $k_{j_{0}}=N^{v-1}$. Then for any alternation point a of the polynomial $Q_{N^{v-1}}$ of least deviation on $L:=K \cap I_{n+1, j_{0}}$ we get

$$
\begin{gathered}
\Delta_{m}(K) \geq\left|Q_{m}(a)\right| \geq \Delta_{N^{v-1}}(L) \cdot \prod_{\zeta_{i} \notin B_{j_{0}}}\left|a-\zeta_{i}\right| \\
\geq(4 N)^{-N^{v-1}} l_{n+v} l_{n+v-1}^{N-1} l_{n+v-2}^{(N-1) N} \cdots l_{n+1}^{(N-1) N^{v-2}} \cdot\left(l_{n} / 4 N\right)^{N^{v}-N^{v-1}},
\end{gathered}
$$

as $\left|a-\zeta_{i}\right|>h_{n+1} / 2>\frac{1}{4 N} l_{n}$ by (3) for $\zeta_{i} \notin B_{j_{0}}$.
Now let $k_{j_{0}}<N^{v-1}$. Then we can take any $N^{v-1}-k_{j_{0}}$ zeros of Q_{m} from the outside the circle $B_{j_{0}}$ and place them arbitrarily on L. Let us denote by \tilde{Q}_{m} the polynomial obtained after this procedure. Then for any point $a \in L$ we get the bound $\left|Q_{m}(a)\right| \geq\left|\tilde{Q}_{m}(a)\right|$ and one can apply the previous arguments to the polynomial \tilde{Q}_{m}.

Thus, in the case of compact set $K_{N}^{\left(\alpha_{n}\right)}$ we have the bound

$$
\Delta_{m}\left(K_{N}^{\left(\alpha_{n}\right)} \cap I_{n, k}\right) \geq(4 N)^{-N^{v}} l_{n}^{\omega(v, n, N)}
$$

with

$$
\begin{gather*}
\omega(v, n, N)=(N-1) N^{v-1}+\alpha_{n+1}(N-1) N^{v-2}+\cdots \\
+\alpha_{n+1} \cdots \alpha_{n+v-1}(N-1)+\alpha_{n+1} \cdots \alpha_{n+v} . \tag{4}
\end{gather*}
$$

Lemma 3. Given fixed natural s let v, m be natural numbers with $1 \leq v \leq s, N^{v-1}<m \leq N^{v}$. Let $\omega=\omega(v, n, N)$ be given by (4), where $\alpha_{n} \rightarrow N$. Then there exists $n_{0}=n_{0}(s)$ such that for all $n \geq n_{0}$ we have $\omega<m[(N-1) v+N]$ and $m>\frac{\omega}{(N-1) \cdot \log _{N}\left(N^{3} \omega\right)}$.

The proof is straightforward.
For simplicity in what follows we consider the case $N=2$, since the general case is quite similar. So, if $\alpha_{n} \rightarrow 2,1 \leq v \leq s$ and $2^{v-1}<m \leq 2^{v}$, then for any basic interval $I_{n, k}$ with sufficiently large n we get the bound $\Delta_{m}\left(K_{2}^{\left(\alpha_{n}\right)} \cap I_{n, k}\right) \geq \delta_{s} l_{n}^{\omega}$. Here δ_{s} is positive and depends only on s and

$$
\begin{equation*}
\omega<m(v+2), \quad m>\frac{\omega}{\log _{2}(8 \omega)} . \tag{5}
\end{equation*}
$$

4. Extension property of $K_{2}^{\left(\alpha_{n}\right)}, \alpha_{n} \rightarrow 2$.

Theorem 1. Let $\alpha_{n} \rightarrow 2$. Then the space $\mathcal{E}\left(K_{2}^{\left(\alpha_{n}\right)}\right)$ has the Dominating Norm property.

Proof: We can take any $R \geq 15$. Given $q=2^{v}$ (let $v \geq 6$) take $u=p \cdot v$ with arbitrary natural $p \geq 5$ and $r=2^{s}$, where $s=(p+2) v$.

Let $\sigma_{s}=\delta_{s} l_{s} l_{s-1} \cdots l_{0}^{2^{s-1}}, \quad t_{0}=2^{r+1} \sigma_{s}^{-1} r!$. Fix $t \geq t_{0}$ and $f \in \mathcal{E}\left(K_{2}^{\left(\alpha_{n}\right)}\right)$ such that $|f|_{0} \leq t^{-R}, \quad\|f\|_{r} \leq t$. We want to show (2), that is

$$
\left|f^{(i)}(y)\right| \leq C_{q}, \quad i \leq q, \quad y \in K_{2}^{\left(\alpha_{n}\right)}
$$

where C_{q} does not depend on t, f, y. Let us fix $y \in K_{2}^{\left(\alpha_{n}\right)}$. There is no loss of generality in assuming that $y=0$. We will denote by P the $r-$ th Taylor polynomial of f at $x=0$:

$$
P(x)=T_{0}^{r} f(x)=\frac{f^{(m)}(0)}{m!} \prod_{j=1}^{m}\left(x-\zeta_{j}\right)
$$

Here m is the maximal number such that $m \leq r$ and $f^{(m)}(0) \neq 0, \zeta_{j} \in \mathbb{C}$ with $\left|\zeta_{j}\right| \leq\left|\zeta_{j+1}\right|, j=1,2, \cdots, m-1$. Since $\left|R_{0}^{r} f(x)\right|=|f(x)-P(x)| \leq t x^{r}$, then $|P(x)| \leq t^{-R}+t x^{r}$ for any $x \in K_{2}^{\left(\alpha_{n}\right)}$. Fix $x_{t}=t^{-\frac{R+1}{r}}$ and $n: l_{n} \leq$ $x_{t}<l_{n-1}$. We can assume that for all indexes larger than this n one can use the bound (5), since otherwise we replace t_{0} by the larger one. Also we suppose that for any $l \geq n$ and $w \leq s$ the product $\alpha_{l+1} \alpha_{l+2} \cdots \alpha_{l+w}$ does not exceed 2^{w+1}.

Clearly, $|P(x)| \leq 2 t^{-R}$ for $x \in K_{2}^{\left(\alpha_{n}\right)} \cap\left[0, l_{n}\right]$. The basic idea is to show that the number of zeros of P near the origin is rather large.

The i-th derivative of P represents the sum of $\frac{m!}{(m-i)!}$ products where every product contains $m-i$ terms of the type $\left(x-\zeta_{j}\right)$. Therefore

$$
\left|f^{(i)}(0)\right|=\left|P^{(i)}(0)\right| \leq \frac{\left|f^{(m)}(0)\right|}{(m-i)!} \prod_{j=i+1}^{m}\left|\zeta_{j}\right|
$$

Let i_{0} be such that $\frac{1}{\left(m-i_{0}\right)!} \prod_{j=i_{0}+1}^{m}\left|\zeta_{j}\right|=\max _{i \leq q} \frac{1}{(m-i)!} \prod_{j=i+1}^{m}\left|\zeta_{j}\right|$.
Let $M=\max \left\{j:\left|\zeta_{j}\right| \leq 2\right\}$ be the number of "not large" roots of P. Let $m_{k}=\max \left\{j:\left|\zeta_{j}\right| \leq 2 l_{n+k}\right\}, k=0,1, \cdots, u$. Clearly, $m_{u} \leq m_{u-1} \leq \cdots \leq$ $m_{0} \leq M \leq m$.

We now decompose the proof in a few steps.

1. Below bound for m_{u}.

Let us show that we can suppose $m_{u} \geq q$. In fact, if $m_{u}<q$, then let $\nu=\max \left\{m_{u}, i_{0}\right\}, Q(x)=\prod_{j=1}^{\nu}\left(x-\zeta_{j}\right)$. Of course, $\nu \leq q$. Therefore there exists $z \in K_{2}^{\left(\alpha_{n}\right)} \cap\left[0, l_{n+u}\right]$ such that $|Q(z)| \geq \Delta_{\nu}\left(K_{N}^{\left(\alpha_{n}\right)} \cap\left[0, l_{n+u}\right]\right) \geq$ $\Delta_{q}\left(K_{N}^{\left(\alpha_{n}\right)} \cap\left[0, l_{n+u}\right]\right) \geq \delta_{s} l_{n+u}^{\omega(v, n+u, 2)}$, by (5). Then

$$
|Q(z)| \geq \delta_{s} l_{n-1}^{\alpha_{n} \alpha_{n+1} \cdots \alpha_{n+u} q(v+2)} \geq \delta_{s} x_{t}^{2^{u+2} q(v+2)}
$$

Now $|P(z)|=\frac{\left|f^{(m)}(0)\right|}{m!}|Q(z)| \prod_{j=\nu+1}^{m}\left|z-\zeta_{j}\right|$. Since $\left|\zeta_{j}\right|>2 l_{n+u}$ for $j \geq$ $\nu+1$, then $z \leq l_{n+u} \leq\left|\zeta_{j}\right|-z \leq\left|\zeta_{j}-z\right|$ and $\left|\zeta_{j}\right| \leq\left|\zeta_{j}-z\right|+z \leq 2\left|\zeta_{j}-z\right|$. Then

$$
2 t^{-R} \geq|P(z)| \geq \frac{\left|f^{(m)}(0)\right|}{m!} \prod_{j=\nu+1}^{m}\left|\zeta_{j}\right| \cdot(1 / 2)^{m-\nu}|Q(z)|
$$

and $\left|f^{(m)}(0)\right| \prod_{j=\nu+1}^{m}\left|\zeta_{j}\right| \leq 2^{m+1-\nu} m!t^{-R} \delta_{s}^{-1} x_{t}^{-2^{u+2} q(v+2)}$. Note also that $\prod_{j=i_{0}+1}^{m}\left|\zeta_{j}\right| \leq \prod_{j=\nu+1}^{m}\left|\zeta_{j}\right|$. In fact, this is trivial if $\nu=i_{0}$. Otherwise, $\left|\zeta_{j}\right| \leq$ $2 l_{n+u}<1$ for $i_{0}<j \leq \nu$. From here we get $\left|f^{(m)}(0)\right| \prod_{j=i_{0}+1}^{m}\left|\zeta_{j}\right| \leq C t^{\mu}$, where $\mu=\frac{R+1}{r} 2^{u+2} q(v+2)-R$ and the constant C depends only on q, r. Applying $R+1<2 R$, we estimate μ from above:

$$
\mu<R \cdot 2^{3-s+u+v}(v+2)-R \leq 0
$$

as $8(v+2) \leq 2^{v}$ due to the choice of v. Thus for $m_{u}<q$ we get the desired bound $\max _{i \leq q}\left|P^{(i)}(0)\right| \leq C$ and we can restrict ourselves by the case $m_{u} \geq q$. In addition, this means that $i_{0}=q$. Thus we only need to show that

$$
\begin{equation*}
\left|f^{(m)}(0)\right| \prod_{j=q+1}^{m}\left|\zeta_{j}\right| \leq C \tag{6}
\end{equation*}
$$

where the constant C depends only on q, r.

2. Representation of the product of large roots.

Let us take $\lambda=\lambda(f, t)$ such that $\left|f^{(m)}(0)\right| \prod_{\left|\zeta_{j}\right|>2}\left|\zeta_{j}\right|=t^{\lambda}$. Here and in the sequel $\prod_{\emptyset}=1$. We want to show that $0<\lambda<2$. In fact, if $\left|\zeta_{j}\right| \leq 2, \forall j$, then

$$
t^{\lambda}=\left|f^{(m)}(0)\right| \leq|f|_{r} \leq t
$$

and $\lambda \leq 1$. If $\left|\zeta_{j}\right|>2$ for some j, then we take $Q(x)=\prod_{j=1}^{M}\left(x-\zeta_{j}\right)$. Since $M \leq r$, then by Lemma 2 there exists $z \in K_{2}^{\left(\alpha_{n}\right)}$ such that $|Q(z)| \geq \sigma_{s}$. For any ζ_{j} with $\left|\zeta_{j}\right|>2$ we get as before $\left|z-\zeta_{j}\right| \geq 1 / 2\left|\zeta_{j}\right|$. Therefore, $\prod_{\left|\zeta_{j}\right|>2}\left|z-\zeta_{j}\right| \geq(1 / 2)^{r} \prod_{j=M+1}^{m}\left|\zeta_{j}\right|$.

On the other hand, $|P(z)| \leq t^{-R}+t z^{r}<2 t$, so $2 t>\sigma_{s} 2^{-r} \frac{1}{m!} t^{\lambda}$ and $\lambda<2$, as $t \geq t_{0}$.

Note also that if $\lambda \leq 0$, then

$$
\left|f^{(m)}(0)\right| \prod_{j=q+1}^{m}\left|\zeta_{j}\right| \leq \prod_{j=q+1}^{M}\left|\zeta_{j}\right| \leq 2^{M-q}<2^{r}
$$

so we can exclude this case as well.

3. Below bound for m_{k}.

We now use the same method as in 1 in order to estimate m_{k} from below in terms of r. Fix k from $\{0,1, \cdots, u\}$ and v_{k} with $2^{v_{k}-1}<m_{k} \leq 2^{v_{k}}$. Let $Q(x)=\prod_{j=1}^{m_{k}}\left(x-\zeta_{j}\right)$. Then there exists $z \in K_{2}^{\left(\alpha_{n}\right)} \cap\left[0, l_{n+k}\right]$ such that $|Q(z)| \geq \delta_{s} l_{n+k}^{\omega\left(v_{k}, n+k, 2\right)}$, where $\omega\left(v_{k}, n+k, 2\right)$ is given by (4). Since
$2 t^{-R} \geq|P(z)|=\frac{\left|f^{(m)}(0)\right|}{m!} \prod_{j=m_{k}+1}^{m}\left|z-\zeta_{j}\right| \cdot|Q(z)|$ and $\left|z-\zeta_{j}\right| \geq 1 / 2\left|\zeta_{j}\right|$ for $j \geq m_{k}+1$, so

$$
\left|f^{(m)}(0)\right| \prod_{j=m_{k}+1}^{m}\left|\zeta_{j}\right| \leq 2^{m+1-m_{k}} m!t^{-R}|Q(z)|^{-1}
$$

Now $\prod_{j=q+1}^{m}\left|\zeta_{j}\right|=\prod_{j=q+1}^{m_{k}}\left|\zeta_{j}\right| \prod_{j=m_{k}+1}^{m}\left|\zeta_{j}\right|$, as $m_{k} \geq q$. Therefore,

$$
\left|f^{(m)}(0)\right| \prod_{j=q+1}^{m}\left|\zeta_{j}\right| \leq 2^{m+1-m_{k}} m!t^{-R} \prod_{j=q+1}^{m_{k}}\left|\zeta_{j}\right||Q(z)|^{-1}
$$

Notice that $\left|\zeta_{j}\right| \leq 2 l_{n+k}$ for $j \leq m_{k}$. Using the bound for $|Q(z)|$, we get

$$
\left|f^{(m)}(0)\right| \prod_{j=q+1}^{m}\left|\zeta_{j}\right| \leq C t^{-R} l_{n+k}^{-\omega\left(v_{k}, n+k, 2\right)+m_{k}-q}
$$

where the constant C depends only on q, r.
If $\omega\left(v_{k}, n+k, 2\right)+q \leq m_{k}$, then we get the desired bound (6). So let us suppose that $\omega\left(v_{k}, n+k, 2\right)+q>m_{k}$. Then $l_{n+k}=l_{n-1}^{\alpha_{n} \cdots \alpha_{n+k}}>x_{t}^{\alpha_{n} \cdots \alpha_{n+k}}$ and $\left|f^{(m)}(0)\right| \prod_{j=q+1}^{m}\left|\zeta_{j}\right|<C t^{\mu_{k}}$, where $\mu_{k}=\frac{R+1}{r} \alpha_{n} \cdots \alpha_{n+k}\left[\omega\left(v_{k}, n+k, 2\right)-\right.$ $\left.m_{k}+q\right]-R$. Again we can suppose that $\mu_{k}>0$. Then $\omega\left(v_{k}, n+k, 2\right)-m_{k}>$ $\frac{R}{R+1} \frac{r}{\alpha_{n} \cdots \alpha_{n+k}}-q$ and $\omega\left(v_{k}, n+k, 2\right)>\frac{R}{R+1} \frac{r}{\alpha_{n} \cdots \alpha_{n+k}}$, as $m_{k} \geq q$. Now by (5) we obtain $m_{k}>\frac{R}{R+1} \frac{r}{\alpha_{n} \cdots \alpha_{n+k}} \div\left[\log _{2} \frac{8 R}{R+1}+s-\log _{2}\left(\alpha_{n} \cdots \alpha_{n+k}\right)\right]$. Since $\alpha_{n} \cdots \alpha_{n+k}>2^{k}$ we get

$$
\begin{equation*}
m_{k}>\frac{R}{R+1} \cdot \frac{r}{\alpha_{n} \cdots \alpha_{n+k}} \cdot \frac{1}{s+3-k} \tag{7}
\end{equation*}
$$

4. Decomposition of the total product.

Finally,

$$
\begin{aligned}
& \left|f^{(m)}(0)\right| \prod_{j=q+1}^{m}\left|\zeta_{j}\right| \leq\left|f^{(m)}(0)\right| \prod_{j=M+1}^{m}\left|\zeta_{j}\right| \prod_{j=q+1}^{m_{u}}\left|\zeta_{j}\right| \cdots \prod_{j=m_{1}+1}^{m_{0}}\left|\zeta_{j}\right| \prod_{j=m_{0}+1}^{M}\left|\zeta_{j}\right| \leq \\
& \quad t^{\lambda}\left(2 l_{n+u}\right)^{m_{u}-q} \cdot\left(2 l_{n+u-1}\right)^{m_{u-1}-m_{u}} \cdots\left(2 l_{n+1}\right)^{m_{1}-m_{2}} \cdot\left(2 l_{n}\right)^{m_{0}-m_{1}} \cdot 2^{M-m_{0}} \\
& =2^{M-q} t^{\lambda} l_{n}^{\Omega} \text { with } \Omega=m_{0}-m_{1}+\alpha_{n+1}\left(m_{1}-m_{2}\right)+\alpha_{n+1} \alpha_{n+2}\left(m_{2}-m_{3}\right)+ \\
& \cdots+\alpha_{n+1} \cdots \alpha_{n+u-1}\left(m_{u-1}-m_{u}\right)+\alpha_{n+1} \cdots \alpha_{n+u}\left(m_{u}-q\right) .
\end{aligned}
$$

Since $l_{n} \leq x_{t}$, we get $\left|f^{(m)}(0)\right| \prod_{j=q+1}^{m}\left|\zeta_{j}\right| \leq 2^{r} t^{\lambda-\frac{R+1}{r} \Omega}$. Thus, it is enough to show that

$$
\begin{equation*}
(R+1) \Omega \geq r \lambda \tag{8}
\end{equation*}
$$

Clearly, $\Omega=m_{0}+\left(\alpha_{n+1}-1\right) m_{1}+\alpha_{n+1}\left(\alpha_{n+2}-1\right) m_{2}+\cdots$ $+\alpha_{n+1} \cdots \alpha_{n+u-1}\left(\alpha_{n+u}-1\right) m_{u}-\alpha_{n+1} \cdots \alpha_{n+u} q$.

For any $k, k \in\{1, \cdots, u\}$ by (7) we obtain

$$
\alpha_{n+1} \cdots \alpha_{n+k-1}\left(\alpha_{n+k}-1\right) m_{k}>\frac{1}{5} \frac{R}{R+1} \frac{r}{s+3-k}
$$

since we consider the values α_{n} rather close to 2 , so $\frac{\alpha_{n+k}-1}{\alpha_{n} \alpha_{n+k}}>\frac{1}{5}$. For $k=0$ we immediately get from (7) the bound $m_{0}>\frac{1}{5} \frac{R}{R+1} \frac{r}{s+3}$.

On the other hand, $\alpha_{n+1} \cdots \alpha_{n+u} q<2^{u+1} q=2^{u+v+1}$.
Therefore,

$$
(R+1) \Omega>\frac{R}{5} r \sum_{k=0}^{u} \frac{1}{s+3-k}-(R+1) 2^{u+v+1}
$$

But $\sum_{j=1}^{J} \frac{1}{s-j}>\int_{0}^{J} \frac{d x}{s-x}=\ln \frac{s}{s-J}$. Hence, $\sum_{k=0}^{u} \frac{1}{s+3-k}>\ln \frac{s+4}{s+3-u}$. The argument of logarithmic function here is larger than 3 due to the choice of u and s. Therefore, $(R+1) \Omega>\frac{R}{5} r-(R+1) 2^{u+v+1}$, which exceeds $r \lambda$, as is easy to check, and (8) is proved.

5. Conjecture.

Clearly, the logarithmic dimension, which is a global characteristic of a set, can not in general give a geometric characterization of the local extension property. Already in the class of generalized Cantor sets of infinite type one can easily find compact sets of logarithmic dimension 1 without the extension property.

Example. Take $\alpha_{n}=N_{n} \uparrow \infty$. Then the corresponding Cantor-type set $K_{\left(N_{n}\right)}^{\left(\alpha_{n}\right)}$ has the logarithmic dimension 1, whereas the space $\mathcal{E}\left(K_{\left(N_{n}\right)}^{\left(\alpha_{n}\right)}\right)$ has not the Dominating Norm property (see [1] for details).
For a geometric characterization of the extension property we suggest here the following "density of capacity" of a set.

Denote by ψ the function $\psi(r)=\ln ^{-1} 1 / r, 0<r<1$, corresponding to the logarithmic measure. Given compact subsets K of \mathbb{R} let $m_{\delta}(K)$ be the outer Housdorff measure of K with respect to the function $\psi^{1-\delta}, 0<\delta<1$. For $x \in K$ let $\rho_{\delta}(x)$ be the lower density of the set K at the point x with respect to the measure m_{δ}, that is

$$
\rho_{\delta}(x)=\liminf _{r \rightarrow 0} \frac{m_{\delta}(K \cap[x-r, x+r])}{m_{\delta}([x-r, x+r])} .
$$

Conjecture. The compact set $K \subset \mathbb{R}$ has the extension property if and only if $\operatorname{in} f_{x \in K} \quad \rho_{\delta}(x)>0$ for any $\delta \in(0,1)$.

References

1 B.Arslan, A. Goncharov and M. Kocatepe, Spaces of Whitney functions on Cantor-type sets, Canad. J. Math.54, 2 (2002), 225-238.
2 R.A.DeVore, G.G.Lorentz, Constructive Approximation, SpringerVerlag (1993).
3 A. Goncharov, Perfect sets of finite class without the extension property, Studia Math. 126(1997), 161-170.
4 B.S. Mitiagin, Approximative dimension and bases in nuclear spaces, Russian Math. Surveys, 16, 4 (1961), 59-127.

5 M . Tidten, Fortsetzungen von C^{∞}-Funktionen, welche auf einer abgeschlossenen Menge in \mathbb{R}^{n} definiert sind, Manuscripta Math. 27, (1979), 291-312.

6 M . Tidten, A geometric characterization for the property $(\underline{D N})$ of $\mathcal{E}(K)$ for arbitrary compact subsets K of \mathbb{R}, Arch. Math. $77(2001)$, 247-252.
7 D. Vogt, Charakterisierung der Unterräume von s, Math.Z. 155, (1977), 109-117.

[^0]: 1991 Mathematics Subject Classification. Primary 46E10; Secondary 26C10.

