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Abstract. We suggest a new approach to prove the dominating norm
property for spaces E(K) of Whitney functions, based on the estima-
tion of least deviation of polynomials on Cantor-type sets. In this way
we prove that the generalized Cantor sets of finite type and logarithmic
dimension 1 have the extension property, since by Tidten-Vogt charac-
terization a compact set K has the extension property iff the space E(K)
has the property DN .

1. Introduction

Let K be a compact set without isolated points in R. Then E(K) is the
space of Whitney functions with the topology defined by the norms

‖ f ‖q = |f |q + sup

{
|(Rq

yf)(k)(x)|
|x− y|q−k

: x, y ∈ K,x 6= y, k = 0, 1, ...q

}
,

q = 0, 1, ..., where |f |q = sup{|f (k)(x)| : x ∈ K, k ≤ q} and Rq
yf(x) =

f(x) − T q
y f(x) is the Taylor remainder. We say that K has the extension

property if there exists a linear continuous extension operator L : E(K) →
C∞(R). The problem of geometric characterization of extension property
goes back to Mityagin [4]. In [1] it was proved that the generalized Cantor
sets of finite type with logarithmic dimension > 1 (see [1] for definitions and
details; see [3] for the bibliography) have the extension property, whereas
for the case with logarithmic dimension <1 this is no longer true. Here we
consider model Cantor-type sets of logarithmic dimension 1 and show that
they have the extension property. The proof is based on the estimation of
least deviation for polynomials on Cantor-type sets.

2. Dominating Norm Property.

We shall use the property DN ( see [7] ) of Fréchet spaces, which can be
given as follows (see e.g. [3],[1]):
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∃p , ∃R > 0 : ∀ q ∃ r, C : ‖ · ‖q ≤ tR‖ · ‖p +
C

t
‖ · ‖r, t > 0. (1)

Here and in the sequel we suppose that the system of seminorms of Fréchet
space is increasing; p, q, r ∈ N0 := {0, 1, ...}.

Due to Tidten ([5], Folg.2.4) we have the following characterization: a
compact set K has the extension property iff the space E(K) has the prop-
erty DN . Due to Tidten and Frerick (see e.g Lemma 1 in [6]) in the case of
spaces of Whitney functions one can replace the norm ‖ · ‖q in (1) by simple
sup-norm | · |q. Obviously, it suffices to consider only elements of increasing
sequence (qv). Thus, in order to show the extension property of a compact
set K it is enough to prove that

∃R > 0 : ∀ q = 2v ∃ r, C, t0 : ∀t > t0, ∀f ∈ E(K)

|f |0 ≤ t−R, ‖f‖r ≤ t =⇒ |f |q ≤ C. (2)

3. Estimation of least deviation for polynomials on Cantor-type
sets.

Let N ≥ 2 be integer and (ln)∞n=0 be a sequence such that l0 = 1,
0 < N · ln < ln−1 , n ∈ N. Let KN be the Cantor set associated with the
sequence (ln) that is K =

⋂∞
n=0 En, where E0 = I0,1 = [0, 1], En is a union

of Nn closed basic intervals In, k of length ln and En+1 is obtained by deleting

of N − 1 open equidistant subinterval of length hn+1, hn+1 = ln−N ln+1

N−1
, from

each In, k , k = 1, 2, ...Nn.

Given sequence (αn)∞n=2 let us denote by K
(αn)
N the Cantor set associated

with the sequence (ln), where l0 = 1, l1 < 1/N and ln = lαn
n−1 = ... =

lα2···αn
1 , n ≥ 2. Here we consider only the case αn → N , which gives the
compact sets with logarithmic dimension 1, so we can suppose that the first
elements of the sequence (αn) are chosen in such a way that the compact

set K
(αn)
N is well-defined. Also without loss of generality we can restrict

ourselves by condition

ln ≤ hn, ∀n. (3)

Given m ∈ N and a compact set K we will consider the value of least
deviation ∆m(K) = infP∈Π′m supz∈K |P (z)|, where Π′

m stands for the set of
all polynomials of degree less than or equal to m with the leading coefficient
equal to 1.

Lemma 1. Given integer N ≥ 2 let KN = ∪N
1 Ik be a union of equidis-

tant intervals Ik of length l with l ≤ h, where h is the distance between
neighboring intervals. Then ∆N(KN) ≥ l/2 · hN−1.

This follows by de la Valée Poussin’s Theorem ( see e.g. [2], T.5.2). We see
that some zeros of the polynomial of least deviation on KN do not belong to
the compact set already for N ≥ 4 provided that the length l is sufficiently
small.
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Lemma 2. Let KN be a Cantor-type compact set associated with the se-
quence (ln). Given v, n ∈ N and m with N v−1 < m ≤ N v let us take any
basic interval In, k, k = 1, ..., Nn, of the compact set KN . Then

∆m(KN ∩ In, k) ≥ (4N)−Nv

ln+vl
N−1
n+v−1l

(N−1)N
n+v−2 · · · l(N−1)Nv−1

n .

Proof : Set K = KN ∩ In, k. Since the values ∆m(K) do not increase,
it is enough to show the inequality only for m = N v. We proceed by
induction on v. The case v = 1 is given by Lemma 1. Suppose that the
desired inequality holds for the value v − 1. The interval In, k covers N
intervals In+1, j, j = 1, 2, ..., N. Consider the circles Bj = {z ∈ C : |z− cj| <
1
2
(ln+1 + hn+1)}, j = 1, 2, ..., N, where cj is the midpoint of In+1, j. Let

Qm, Qm(x) =
∏m

i=1(x− ζi), be the polynomial of least deviation on K. Let
kj be the number of zeros of Qm in the circle Bj, j = 1, 2, ..., N. Clearly,
there exists a number j 0 such that kj 0 ≤ N v−1.

Suppose at first that kj 0 = N v−1. Then for any alternation point a of the
polynomial QNv−1 of least deviation on L := K ∩ In+1, j 0 we get

∆m(K) ≥ |Qm(a)| ≥ ∆Nv−1(L) ·
∏

ζi /∈Bj0

|a− ζi|

≥ (4N)−Nv−1

ln+vl
N−1
n+v−1l

(N−1)N
n+v−2 · · · l(N−1)Nv−2

n+1 · (ln/4N)Nv−Nv−1

,

as |a− ζi| > hn+1/2 > 1
4N

ln by (3) for ζi /∈ Bj 0 .
Now let kj 0 < N v−1. Then we can take any N v−1 − kj 0 zeros of Qm from

the outside the circle Bj0 and place them arbitrarily on L. Let us denote

by Q̃m the polynomial obtained after this procedure. Then for any point
a ∈ L we get the bound |Qm(a)| ≥ |Q̃m(a)| and one can apply the previous
arguments to the polynomial Q̃m. 2

Thus, in the case of compact set K
(αn)
N we have the bound

∆m(K
(αn)
N ∩ In, k) ≥ (4N)−Nv

l ω(v, n, N)
n

with
ω(v, n, N) = (N − 1)N v−1 + αn+1(N − 1)N v−2 + · · ·

+αn+1 · · ·αn+v−1(N − 1) + αn+1 · · ·αn+v. (4)

Lemma 3. Given fixed natural s let v, m be natural numbers with
1 ≤ v ≤ s, N v−1 < m ≤ N v. Let ω = ω(v, n,N) be given by (4), where
αn → N . Then there exists n0 = n0(s) such that for all n ≥ n0 we have
ω < m[(N − 1)v + N ] and m > ω

(N−1)·logN (N3ω)
.

The proof is straightforward.
For simplicity in what follows we consider the case N = 2, since the

general case is quite similar. So, if αn → 2, 1 ≤ v ≤ s and 2v−1 < m ≤ 2v,
then for any basic interval In, k with sufficiently large n we get the bound

∆m(K
(αn)
2 ∩ In, k) ≥ δsl

ω
n . Here δs is positive and depends only on s and

ω < m(v + 2), m >
ω

log2(8ω)
. (5)
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4. Extension property of K
(αn)
2 , αn → 2.

Theorem 1. Let αn → 2. Then the space E(K
(αn)
2 ) has the Dominating

Norm property.

Proof : We can take any R ≥ 15. Given q = 2v (let v ≥ 6) take u = p · v
with arbitrary natural p ≥ 5 and r = 2s, where s = (p + 2)v.

Let σs = δs ls ls−1 · · · l2s−1

0 , t0 = 2r+1σ−1
s r!. Fix t ≥ t0 and f ∈ E(K

(αn)
2 )

such that |f |0 ≤ t−R, ‖f‖r ≤ t. We want to show (2), that is

|f (i)(y)| ≤ Cq, i ≤ q, y ∈ K
(αn)
2 ,

where Cq does not depend on t, f, y. Let us fix y ∈ K
(αn)
2 . There is no loss

of generality in assuming that y = 0. We will denote by P the r−th Taylor
polynomial of f at x = 0:

P (x) = T r
0 f(x) =

f (m)(0)

m!

m∏
j=1

(x− ζj).

Here m is the maximal number such that m ≤ r and f (m)(0) 6= 0, ζj ∈ C
with |ζj| ≤ |ζj+1|, j = 1, 2, · · · ,m−1. Since |Rr

0f(x)| = |f(x)−P (x)| ≤ t xr,

then |P (x)| ≤ t−R + t xr for any x ∈ K
(αn)
2 . Fix xt = t−

R+1
r and n : ln ≤

xt < ln−1. We can assume that for all indexes larger than this n one can
use the bound (5), since otherwise we replace t0 by the larger one. Also we
suppose that for any l ≥ n and w ≤ s the product αl+1αl+2 · · ·αl+w does
not exceed 2w+1.

Clearly, |P (x)| ≤ 2t−R for x ∈ K
(αn)
2 ∩ [0, ln]. The basic idea is to show

that the number of zeros of P near the origin is rather large.
The i−th derivative of P represents the sum of m!

(m−i)!
products where

every product contains m− i terms of the type (x− ζj). Therefore

|f (i)(0)| = |P (i)(0)| ≤ |f (m)(0)|
(m− i)!

m∏
j=i+1

|ζj|.

Let i0 be such that 1
(m−i0)!

∏m
j=i0+1 |ζj| = maxi≤q

1
(m−i)!

∏m
j=i+1 |ζj|.

Let M = max{j : |ζj| ≤ 2} be the number of ”not large” roots of P . Let
mk = max{j : |ζj| ≤ 2 ln+k}, k = 0, 1, · · · , u. Clearly, mu ≤ mu−1 ≤ · · · ≤
m0 ≤ M ≤ m.

We now decompose the proof in a few steps.
1. Below bound for mu.
Let us show that we can suppose mu ≥ q. In fact, if mu < q, then let

ν = max{mu, i0}, Q(x) =
∏ν

j=1(x − ζj). Of course, ν ≤ q. Therefore

there exists z ∈ K
(αn)
2 ∩ [0, ln+u] such that |Q(z)| ≥ ∆ν(K

(αn)
N ∩ [0, ln+u]) ≥

∆q(K
(αn)
N ∩ [0, ln+u]) ≥ δs l

ω(v, n+u, 2)
n+u , by (5). Then

|Q(z)| ≥ δsl
αnαn+1···αn+uq(v+2)
n−1 ≥ δsx

2u+2q(v+2)
t .
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Now |P (z)| = |f (m)(0)|
m!

|Q(z)| ∏m
j=ν+1 |z − ζj|. Since |ζj| > 2ln+u for j ≥

ν + 1, then z ≤ ln+u ≤ |ζj| − z ≤ |ζj − z| and |ζj| ≤ |ζj − z|+ z ≤ 2 |ζj − z|.
Then

2 t−R ≥ |P (z)| ≥ |f (m)(0)|
m!

m∏
j=ν+1

|ζj| · (1/2)m−ν |Q(z)|

and |f (m)(0)|∏m
j=ν+1 |ζj| ≤ 2m+1−ν m! t−Rδ−1

s x
−2u+2q(v+2)
t . Note also that∏m

j=i 0+1 |ζj| ≤
∏m

j=ν+1 |ζj|. In fact, this is trivial if ν = i0. Otherwise, |ζj| ≤
2 ln+u < 1 for i0 < j ≤ ν. From here we get |f (m)(0)| ∏m

j=i 0+1 |ζj| ≤ C tµ,

where µ = R+1
r

2u+2 q(v + 2)−R and the constant C depends only on q, r.
Applying R + 1 < 2R, we estimate µ from above:

µ < R · 23−s+u+v(v + 2)−R ≤ 0,

as 8(v + 2) ≤ 2v due to the choice of v. Thus for mu < q we get the
desired bound maxi≤q |P (i)(0)| ≤ C and we can restrict ourselves by the
case mu ≥ q. In addition, this means that i0 = q. Thus we only need to
show that

|f (m)(0)|
m∏

j=q+1

|ζj| ≤ C, (6)

where the constant C depends only on q, r.
2. Representation of the product of large roots.
Let us take λ = λ(f, t) such that |f (m)(0)| ∏

|ζj |>2 |ζj| = tλ. Here and in

the sequel
∏
∅ = 1. We want to show that 0 < λ < 2. In fact, if |ζj| ≤ 2, ∀j,

then

tλ = |f (m)(0)| ≤ |f |r ≤ t

and λ ≤ 1. If |ζj| > 2 for some j, then we take Q(x) =
∏M

j=1(x− ζj). Since

M ≤ r, then by Lemma 2 there exists z ∈ K
(αn)
2 such that |Q(z)| ≥ σs.

For any ζj with |ζj| > 2 we get as before |z − ζj| ≥ 1/2 |ζj|. Therefore,∏
|ζj |>2 |z − ζj| ≥ (1/2)r

∏m
j=M+1 |ζj|.

On the other hand, |P (z)| ≤ t−R + tzr < 2t, so 2t > σs2
−r 1

m!
tλ and

λ < 2, as t ≥ t0.
Note also that if λ ≤ 0, then

|f (m)(0)|
m∏

j=q+1

|ζj| ≤
M∏

j=q+1

|ζj| ≤ 2M−q < 2r,

so we can exclude this case as well.
3. Below bound for mk.
We now use the same method as in 1 in order to estimate mk from

below in terms of r. Fix k from {0, 1, · · · , u} and vk with 2vk−1 < mk ≤ 2vk .

Let Q(x) =
∏mk

j=1(x − ζj). Then there exists z ∈ K
(αn)
2 ∩ [0, ln+k] such

that |Q(z)| ≥ δsl
ω(vk, n+k, 2)
n+k , where ω(vk, n + k, 2) is given by (4). Since
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2 t−R ≥ |P (z)| = |f (m)(0)|
m!

∏m
j=mk+1 |z − ζj| · |Q(z)| and |z − ζj| ≥ 1/2 |ζj| for

j ≥ mk + 1, so

|f (m)(0)|
m∏

j=mk+1

|ζj| ≤ 2m+1−mk m! t−R |Q(z)|−1.

Now
∏m

j=q+1 |ζj| =
∏mk

j=q+1 |ζj|
∏m

j=mk+1 |ζj|, as mk ≥ q. Therefore,

|f (m)(0)|
m∏

j=q+1

|ζj| ≤ 2m+1−mk m! t−R

mk∏
j=q+1

|ζj| |Q(z)|−1.

Notice that |ζj| ≤ 2 ln+k for j ≤ mk. Using the bound for |Q(z)|, we get

|f (m)(0)|
m∏

j=q+1

|ζj| ≤ C t−R l
−ω(vk, n+k, 2)+mk−q
n+k ,

where the constant C depends only on q, r.
If ω(vk, n + k, 2) + q ≤ mk, then we get the desired bound (6). So let us

suppose that ω(vk, n+k, 2)+q > mk. Then ln+k = l
αn···αn+k

n−1 > x
αn···αn+k

t and

|f (m)(0)| ∏m
j=q+1 |ζj| < C tµk , where µk = R+1

r
αn · · ·αn+k [ω(vk, n + k, 2)−

mk+q]−R. Again we can suppose that µk > 0. Then ω(vk, n+k, 2)−mk >
R

R+1
r

αn···αn+k
− q and ω(vk, n + k, 2) > R

R+1
r

αn···αn+k
, as mk ≥ q. Now by

(5) we obtain mk > R
R+1

r
αn···αn+k

÷ [log2
8R

R+1
+ s − log2(αn · · ·αn+k)]. Since

αn · · ·αn+k > 2k we get

mk >
R

R + 1
· r

αn · · ·αn+k

· 1

s + 3− k
. (7)

4. Decomposition of the total product.
Finally,

|f (m)(0)|
m∏

j=q+1

|ζj| ≤ |f (m)(0)|
m∏

j=M+1

|ζj|
mu∏

j=q+1

|ζj| · · ·
m0∏

j=m1+1

|ζj|
M∏

j=m0+1

|ζj| ≤

tλ (2 ln+u)
mu−q · (2 ln+u−1)

mu−1−mu · · · (2 ln+1)
m1−m2 · (2 ln)m0−m1 · 2M−m0

= 2M−q tλ lΩ
n with Ω = m0 −m1 + αn+1(m1 −m2) + αn+1αn+2(m2 −m3) +

· · ·+ αn+1 · · ·αn+u−1(mu−1 −mu) + αn+1 · · ·αn+u(mu − q).

Since ln ≤ xt, we get |f (m)(0)| ∏m
j=q+1 |ζj| ≤ 2r tλ−

R+1
r

Ω. Thus, it is enough
to show that

(R + 1) Ω ≥ r λ. (8)

Clearly, Ω = m0 + (αn+1 − 1)m1 + αn+1(αn+2 − 1)m2 + · · ·
+ αn+1 · · ·αn+u−1(αn+u − 1)mu − αn+1 · · ·αn+u q.

For any k, k ∈ {1, · · · , u} by (7) we obtain

αn+1 · · ·αn+k−1(αn+k − 1)mk >
1

5

R

R + 1

r

s + 3− k
,

since we consider the values αn rather close to 2, so αn+k−1

αnαn+k
> 1

5
. For k = 0

we immediately get from (7) the bound m0 > 1
5

R
R+1

r
s+3

.
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On the other hand, αn+1 · · ·αn+u q < 2u+1 q = 2u+v+1.
Therefore,

(R + 1) Ω >
R

5
r

u∑

k=0

1

s + 3− k
− (R + 1) 2u+v+1.

But
∑J

j=1
1

s−j
>

∫ J

0
dx

s−x
= ln s

s−J
. Hence,

∑u
k=0

1
s+3−k

> ln s+4
s+3−u

. The ar-

gument of logarithmic function here is larger than 3 due to the choice of u
and s. Therefore, (R + 1) Ω > R

5
r − (R + 1) 2u+v+1, which exceeds r λ, as

is easy to check, and (8) is proved. 2

5. Conjecture.

Clearly, the logarithmic dimension, which is a global characteristic of a set,
can not in general give a geometric characterization of the local extension
property. Already in the class of generalized Cantor sets of infinite type
one can easily find compact sets of logarithmic dimension 1 without the
extension property.

Example. Take αn = Nn ↑ ∞. Then the corresponding Cantor-type set

K
(αn)
(Nn) has the logarithmic dimension 1, whereas the space E(K

(αn)
(Nn)) has not

the Dominating Norm property (see [1] for details).
For a geometric characterization of the extension property we suggest here
the following ”density of capacity” of a set.

Denote by ψ the function ψ(r) = ln−1 1/r, 0 < r < 1, corresponding to
the logarithmic measure. Given compact subsets K of R let mδ(K) be the
outer Housdorff measure of K with respect to the function ψ1−δ, 0 < δ < 1.
For x ∈ K let ρδ(x) be the lower density of the set K at the point x with
respect to the measure mδ, that is

ρδ(x) = lim inf
r→0

mδ(K ∩ [x− r, x + r])

mδ([x− r, x + r])
.

Conjecture. The compact set K ⊂ R has the extension property if and
only if infx∈K ρδ(x) > 0 for any δ ∈ (0, 1).
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