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ABSTRACT. We suggest a new approach to prove the dominating norm
property for spaces £(K) of Whitney functions, based on the estima-
tion of least deviation of polynomials on Cantor-type sets. In this way
we prove that the generalized Cantor sets of finite type and logarithmic
dimension 1 have the extension property, since by Tidten-Vogt charac-
terization a compact set K has the extension property iff the space £(K)
has the property DN.

1. Introduction

Let K be a compact set without isolated points in R. Then £(K) is the
space of Whitney functions with the topology defined by the norms
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g = 0,1,..., where |f], = sup{|f®(z)| : € K,k < ¢} and R!f(z) =
f(z) — T f(z) is the Taylor remainder. We say that K has the extension
property if there exists a linear continuous extension operator L : £(K) —
C*®(R). The problem of geometric characterization of extension property
goes back to Mityagin [4]. In [1] it was proved that the generalized Cantor
sets of finite type with logarithmic dimension > 1 (see [1] for definitions and
details; see [3] for the bibliography) have the extension property, whereas
for the case with logarithmic dimension <1 this is no longer true. Here we
consider model Cantor-type sets of logarithmic dimension 1 and show that
they have the extension property. The proof is based on the estimation of
least deviation for polynomials on Cantor-type sets.

2. Dominating Norm Property.
We shall use the property DN ( see [7] ) of Fréchet spaces, which can be
given as follows (see e.g. [3],[1]):
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Ip,3R>0:YqIr,C: |||, <tF| - Il, +
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Here and in the sequel we suppose that the system of seminorms of Fréchet
space is increasing; p,q,r € Nog :={0,1,...}.

Due to Tidten ([5], Folg.2.4) we have the following characterization: a
compact set K has the extension property iff the space £(K') has the prop-
erty DN. Due to Tidten and Frerick (see e.g Lemma 1 in [6]) in the case of
spaces of Whitney functions one can replace the norm || - ||, in (1) by simple
sup-norm | - |,. Obviously, it suffices to consider only elements of increasing
sequence (q,). Thus, in order to show the extension property of a compact
set K it is enough to prove that

AR >0:Vqg=2"3r, C ty: YVt >ty Vf € E(K)
[flo <t |lfl, <t=1fl, <C. (2)

3. Estimation of least deviation for polynomials on Cantor-type
sets.

Let N > 2 be integer and (1), be a sequence such that Iy = 1,
0 < N-l, <l,.1,n€eN. Let Ky be the Cantor set associated with the
sequence (l,) that is K = _, E,, where Ey = Iy, = [0,1], E, is a union
of N" closed basic intervals I,, ;, of length [, and F,,;, is obtained by deleting
of N —1 open equidistant subinterval of length h, 1, h, 1 = %
each I, , ,k=1,2,..N™

Given sequence ()3, let us denote by K](\?”) the Cantor set associated
with the sequence (I,), where Iy = 1,5, < 1/N and [,, = i, = ... =
[727% n > 2. Here we consider only the case a,, — N, which gives the
compact sets with logarithmic dimension 1, so we can suppose that the first
elements of the sequence (o) are chosen in such a way that the compact

, from

set K](\?") is well-defined. Also without loss of generality we can restrict
ourselves by condition

I, < h,, Vn. (3)

Given m € N and a compact set K we will consider the value of least
deviation A,,(K) = infpery sup,eg |P(2)|, where I/ stands for the set of
all polynomials of degree less than or equal to m with the leading coefficient
equal to 1.

Lemma 1. Given integer N > 2 let Ky = UV I be a union of equidis-
tant intervals Iy, of length | with | < h, where h is the distance between
neighboring intervals. Then An(Ky) > 1/2 - hN 71,

This follows by de la Valée Poussin’s Theorem ( see e.g. [2], T.5.2). We see
that some zeros of the polynomial of least deviation on K do not belong to
the compact set already for N > 4 provided that the length [ is sufficiently
small.
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Lemma 2. Let Ky be a Cantor-type compact set associated with the se-
quence (1,). Given v,n € N and m with N'=' < m < NV let us take any
basic interval I, 1, k =1,...,N", of the compact set Ky. Then

A (K O L) = (AN) N N Y V0N

n

Proof: Set K = Ky N I, . Since the values A,,(K) do not increase,
it is enough to show the inequality only for m = N". We proceed by
induction on v. The case v = 1 is given by Lemma 1. Suppose that the
desired inequality holds for the value v — 1. The interval I,,  covers N
intervals I,,11,;, j = 1,2,..., N. Consider the circles B; = {z € C: |z —¢j| <
%(lnﬂ + hpy1)}, 7 = 1,2,..., N, where ¢; is the midpoint of I,y ;. Let
Qm: Qm(z) =[[~,(x — (), be the polynomial of least deviation on K. Let
k; be the number of zeros of @), in the circle B;, 7 = 1,2,...,N. Clearly,
there exists a number j, such that k;, < Nv—L

Suppose at first that k;, = NY~!. Then for any alternation point a of the
polynomial Q) nv-1 of least deviation on L := K N 1,44 ;, we get

Au(K) 2 |Qm(a)l = Aye-i(L) - [T la—di
Ci¢3j0
> (4N)7NU_1ln+vl,]:ifvl_157(ﬁ;)2]v L l?SJ-Y-Il)Nv_Z ‘ (ln/4N)NU7NU_1,
as |CL - <2| > hn+1/2 > ﬁln by <3> for Cz ¢ Bjo :

Now let k;, < N*~!. Then we can take any N*~! — k;  zeros of Q,, from
the outside the circle B;, and place them arbitrarily on L. Let us denote
by @, the polynomial obtained after this procedure. Then for any point
a € L we get the bound |@Q,,(a)| > |@y.(a)| and one can apply the previous

arguments to the polynomial @),,. O

)

Thus, in the case of compact set K](\?” we have the bound

Ap(KS NI, ) > (AN) N N)

with
w(v, n, N)=(N—=1)N""+ a, 1 (N —1)N""? +...

+an+1 e OénJrvfl(N - 1) + Opt1 - Qppy- (4)

Lemma 3. Given fixed natural s let v, m be natural numbers with
1 <v<s N7l <m < NV Let w= w(v,n,N) be given by (4), where
a, — N. Then there exists ng = ng(s) such that for all n > ng we have

w<m[(N—1)U+N] andm>M‘}W.

The proof is straightforward.

For simplicity in what follows we consider the case N = 2, since the
general case is quite similar. So, if a,, — 2, 1 <v < s and 27! <m < 2v,
then for any basic interval I, , with sufficiently large n we get the bound

Am(Kéa”) N1, 1) > 0:12. Here d, is positive and depends only on s and

w<mv+2), m>@. (5)
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4. Extension property of Kéa"), o, — 2.

Theorem 1. Let o, — 2. Then the space 8(K§a")) has the Dominating
Norm property.

Proof: We can take any R > 15. Given ¢ = 2V (let v > 6) take u = p-v
with arbitrary natural p > 5 and r = 2°, where s = (p + 2)v.

Let 05 = 831y ls_y -+ 127", to = 21071l Fix t > to and f € E(K™™)
such that [flo <t %, ||f]l < t. We want to show (2), that is

fO) < Cy i< q, ye K,
where C; does not depend on ¢, f,y. Let us fix y € Kéa"). There is no loss
of generality in assuming that y = 0. We will denote by P the r—th Taylor
polynomial of f at x = 0:

(m) m
Pa) =15 = O e - o).

Here m is the maximal number such thatm < r and f™(0) # 0, ¢; € C
with || < |Cj41], j =1,2,--- ,m—1. Since |R{ f(z)| = | f(x)—P(x)| < ta’,
then |P(z)| <t +ta” for any z € Kg(a") Fix o, =t~ and n: [, <
ry < l,_1. We can assume that for all indexes larger than this n one can
use the bound (5), since otherwise we replace ¢y by the larger one. Also we
suppose that for any [ > n and w < s the product a; 10p49 - ayq,, does
not exceed 2vF1,

Clearly, |P(z)| < 2t % for x € K;a”) N [0,1,]. The basic idea is to show
that the number of zeros of P near the origin is rather large

The ¢—th derivative of P represents the sum of (=] products where

every product contains m — ¢ terms of the type (x — ;). Therefore

£9(0)] = PO )] < O H Gl

'] i+1

Let ig be such that m [17si, 1 1G] = maxig, m [T 161

Let M = max{j : |(;| < 2} be the number of "not large” roots of P. Let
my, = max{j : |(| < 214k}, k=0,1,---  u. Clearly, m, < my,_q <--- <
mo < M <m.

We now decompose the proof in a few steps.

1. Below bound for m,,.

Let us show that we can suppose m, > ¢. In fact, if m, < g, then let
v = max{m,, io}, Q(x) = [[[_(z — ). Of course, v < q. Therefore

there exists z € K" N[0, ln+u] such that [Q(2)| > A, (KN™ N[0, litu]) >
AJKE™ [0, Losa]) > 6, 1202 by (5). Then

| ( )| > (S loznocn+1 an+uq(v+2) Z 5S$?u+2q(v+2).
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<m m . .
Now |P(z)] = L Q)| TT5Z,.1 [z — G- Since |(] > 24y for j >
v, then 2 <l < |G~ 2 < 1 — 2] and 1G] < 1 — 2| +2 < 21¢ 2]
Then

2077 > |P(2)| > —— H 1Gil - (1/2)"77]Q(2)]
j=v+1
and |f(™(0 T, 1G] < 2mH = ml 5ot _QHZ “*+2) Note also that
[1s 01 Gl < TTL, 1 1G] In fact, this is trivial 1f v = 1. Otherwise, |(;| <
21w < 1 for ig < j < v. From here we get | f(™(0)| [1s, 1 1G] < Ot
where p = £ 242 g(v 4 2) — R and the constant C' depends only on ¢, -
Applying R+ 1 < 2R, we estimate p from above:

p< R-2575T 0 (y 4 2) - R <0,

as 8(v + 2) < 2Y due to the choice of v. Thus for m, < ¢ we get the
desired bound max;<, |P?(0)] < C and we can restrict ourselves by the
case m, > q. In addition, this means that ¢y, = ¢. Thus we only need to
show that

IT ui=e (6)
J=q+1
where the constant C' depends only on ¢, r.
2. Representation of the product of large roots.
Let us take A = A(f,t) such that |f(™(0)] H\Cj|>2 |¢;| = t*. Here and in
the sequel [], = 1. We want to show that 0 < A < 2. In fact, if |(;| <2, Vj,
then

=) < |fl, <t

and A < 1. If |(;] > 2 for some j, then we take Q(x) = Hjj\il(x — ;). Since
M < r, then by Lemma 2 there exists z € Kéa") such that |Q(2)| > os.
For any ¢; with |(;| > 2 we get as before |z — (;| > 1/2 |(;|. Therefore,
[T 5212 = Gl = (1/2) TIiZaga 1G1-

On the other hand, |P(2)| < 7% +¢2" < 2t, s0 2t > 0,277 4 t* and
A< 2 as t >t

Note also that if A < 0, then

m M
IT i< I gl <2 <2,
J=q+1 Jj=q+1
so we can exclude this case as well.
3. Below bound for my.

We now use the same method as in 1 in order to estimate my; from
below in terms of 7. Fix k from {0, 1,--- ,u} and vy, with 2%~1 < m, < 29,

Let Q(z) = [[[2(z — ¢;). Then there exists z € K 1[0, lpss] such
that |Q(z)] > ¢ ln;,;’“ "2 where w(vg, n + k, 2) is given by (4). Since
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_ (m)
207F > |P(z)| = LOUT™ e = Gl 1Q(2)] and |z — ¢ > 1/2 [¢] for
J=mi+1, so
L) T 16 < 2t ml 7 Q=)

Jj=mg+1
Now HTqu KJ| = HJ —g+1 ‘CJ’ Hg =my+1 |<]‘ as my > q. Therefore,

H |G| < 2 ) R H Gl Q)]

J=q+1 J=q+1
Notice that |(j| < 21,4+ for j < my. Using the bound for |Q(z)|, we get

m
|C| < Ct—Rl—w(Uk7n+k,2)+mk—q
| | gl = ’

n+k
J=q+1

where the constant C' depends only on ¢, r.

If w(vg, n+k, 2) + ¢ < my, then we get the desired bound (6). So let us
suppose that w(vy, n+k, 2)+q > my. Then [, = 1" > 277" and
| Fm)(0)] [T, |Gl < Cth, where py, = Bl oy oo g [w(vg, n+ K, 2) —
my+¢q]— R. Again we can suppose that /i > 0. Then w(vg, n+k, 2)—my >

R L — — ¢ and w(vk, n+k, 2) > - as my > q. Now by

R+1 o Qntk R+1 Qp O +k
, :
(5) we obtain my > R+1 p—— + [log, & R+1 + 5 — logy(au, - - - Apyr)]. Since

Qp*** Oy > 2% we get
R r 1
> . . .
R+1 ap-app s+3—k
4. Decomposition of the total product.

(7)

Finally,
m m Moy mo M
0 T 6l <o T 160 TT 16t TT 1ol T 161 <
J=q+1 J=M+1 J=q+1 Jg=mi+1 J=mo+1

A (2 ln_i_u)mu—q . (2 ln_w_l)muq—mu .. (2 ln+1)m1—m2 . (2 ln)mo—ml . 9M—mo
= 2M=04M 2 with Q = mg — my + Qg1 (M1 — ma) + Qnp1nga(me —ms) +
-+ (0790 IR an+u—1(mu—1 - mu) + (070 IR an—i—u(m]g 1_ q>
Since I,, < 7, we get | f™(0)] [, Gl <2 A="2 Thus, it is enough
to show that

(R+1)Q>7r A\ (8)

Clearly, Q = mg+ (pe1 — 1)my + a1 (e — Dmg + - - -
+ (O NE an+u—1(an+u - 1)mu — Qpy1 - Opgq (.
For any k, k € {1,--- ,u} by (7) we obtain
1 R r

n+l """ Unik— n -1 >z )
Gt = Ot (@ = Dmu > 5 2o gy

. . —1
since we consider the values «,, rather close to 2, so Z";—’“M > % For k=0
n“n

we immediately get from (7) the bound mg > 1 Rijrl s
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On the other hand, a1+ Qpyy g < 29 g = 200 HL
Therefore,

R « 1
1 Q - - 12u+v+1.
(R+1) >5rkzzos+3_k (R+1)

J J dx S u S
But > 7, % > [/ 4 = In—*. Hence, Y ,_, S+§_k > In S+‘§fu. The ar-
gument of logarithmic function here is larger than 3 due to the choice of u
and s. Therefore, (R+1)Q > £r — (R+1)2*"*! which exceeds r A, as

is easy to check, and (8) is proved. O

5. Conjecture.

Clearly, the logarithmic dimension, which is a global characteristic of a set,
can not in general give a geometric characterization of the local extension
property. Already in the class of generalized Cantor sets of infinite type
one can easily find compact sets of logarithmic dimension 1 without the
extension property.

Example. Take a,, = N,, T oo. Then the corresponding Cantor-type set

K ((;Z)) has the logarithmic dimension 1, whereas the space £(K ((]OQZ))) has not
the Dominating Norm property (see [1] for details).

For a geometric characterization of the extension property we suggest here
the following ”density of capacity” of a set.

Denote by ¢ the function ¢(r) = In"'1/r, 0 < r < 1, corresponding to
the logarithmic measure. Given compact subsets K of R let mgs(K) be the
outer Housdorff measure of K with respect to the function 9%, 0 < 6§ < 1.
For x € K let ps(z) be the lower density of the set K at the point « with
respect to the measure mg, that is

ps(z) = Tim in ms(K N[z —r,x+7])
o r—0 ms([x — 7,z + 7))

Conjecture. The compact set K C R has the extension property if and
only if inf.cx ps(x) > 0 for any 6 € (0,1).
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